Technical Report 70-121 July 1970
NGL-21-~002-008

ELIMINATION PROCEDURES
FOR SPARSE SYMMETRIC LINEAR SYSTEMS
OF A SPECIAL STRUCIURE

by

Jitka Segethova

UNIVERSITY OF MARYLAND
COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND

-« 6
W 1 A4 {THRU)

K/ﬁ (“73 g/éf {copg)

{NASA CR CR TMX CR AD NUMBER) {CATEGORY)

FACILITY FORM 602

Technical Report 70-121 July 1970
NGL-21-002-008

ELIMINATION PROCEDURES
FOR SPARSE SYMMETRIC LINEAR SYSTEMS
OF A SPECIAL STRUCTURE

by

Jitka Segethova

This research was sponsored in part by the National
Aeronautics and Space Administration, Grant NGL 21-002-008,
to the Computer Science Center of the University of Maryland.

INTRODUCTION

The systems of linear algebraic equations which arise in solving
differential equations by finite element methods usually have matrices
which are sparse and of a certain regular structure. For the solution
of such a system by eliminatiqn, it is desirable to use these properties
of the corresponding matrix. More specifically, we wish to find an
ordering of the rows and columns and an algorithm for solving the
system such that the storage requirements and the number of operations
performed during the elimination are minimized. This paper discusses
the problem of finding such a permutation of rows and columns and an
algorithm for this type of ordered system of equations.

There exist some approaches to this problem in which the sparsity
is used to a certain extent. One of them is very general in that the
optimal (or nearly optimal) ordering is sought and that the algorithm
for solving the ordered system treats the matrix element by element to
ensure that only necessary operations are performed. This case and the
case of bandmatrices are compared with respect to the regularity of the
structure of a given matrix before and after ordering. In connection
with this comparison another approach is introduced. A type of matrix
more general than a bandmatrix is considered as well as the means to
order the rows and columns to get this form. Then examples of matrices
reordered by the given procedure together with the corresponding results

are discussed.

1. Problems of elimination for sparse systems.

In solving differential equations by the finite element or
finite difference method we usually obtain systems of linear algebraic
equations, with large sparse matrices of certain regular zero-nonzero
structures, which must be solved. When solving these systems by
Gauss elimination we will want to use the sparsity as well as the
regularity of zero-nonzero structure of a given matrix. Our aim is
to reduce storage requirements and the number of operations performed
during the elimination. Fewer operations take less time and result
in less roundoff error.

The first problem is, given an ordering of rows and columns,
we want to operate only on such elements which are involved and changed
in the elimination process itself. The second problem is to find an
ordering of rows and columns of a given matrix so that the number of
nonzero elements created in the forward course of Gauss elimination
as well as the number of operations performed is minimal for a given
matrix. Further we should consider the structure of a given matrix
before as well as after reordering it. Usually we solve many systems
with matrices of the same structure which differ from each other only
by some parameter, for example a mesh size h . It is desirable to

find a general rule for ordering such classes of matrices.

-3 -

2. A brief survey of techniques used.

One of the simplest ways to solve these problems is to
consider certain matrices as bandmatrices. Let us have an nxn

symmetric bandmatrix.

d

Let us suppose that the nonzero elements appear only in the indicated
band, i.e. a,, # 0= |i-j| < m . Then it is sufficient to store
and operate only on the elements which are within thevband or in the
symmetric case in the upper half of the band.

The number of multiplications performed during the forward
course of Gauss elimination depends upon m (;t is A,.ELE;E_Ql n)
as well as the storage requirements.

The bandmatrices offer important advantages. First, for
a symmetric bandmatrix A all the "£fill in" due to elimination is
within the original band. On the other hand all the elements which
are within the band are operated on, even those which are possibly

not involved in the elimination process itself. (For example the

elements denoted by * in the example 2.1.)

Example 2.1.

ﬁ““‘m VRV 7

XX ¥% X

X XK X % X

X X X X
X X X

X X

X

Secondly, the elimination scheme for a symmetric bandmatrix is
particularly simple. Also data handling is very simple because the
zero-nonzero structure of a matrix is described in terms of m , n .

A change of the parameter h will result only in a change
of m , n . But very often it is useful to find a permutation of rows
and columns to reduce the width of a bandmatrix. This is a complicated
problem and it has been discussed by E. Cuthill, J. McKee [1], G. G.
Alway, D. W, Martin [2], R. Rosen [3], and others.

The most efficient way for solving the sparse linear
algebraic systems (from the point of view of minimization of number
of operations and storage) is to find an ordering of rows and colummns
which minimizes the number of operations and the number of nonzero
elements created. Problems of finding a so-called optimal or nearfy-
optimal ordering have been discussed by many authors; S. Parter [4],

R. P. Tewarson [5], W. R. Spillers, N. Hickerson [7], and others.

-5 -

Let us have a symmetric matrix A with the graph G and
let us suppose that the elimination can be performed in the arbitrary
ordering of rows and columns. (This assumption is satisfied, for example,
by symmetric positive definite matrices.) Also let A be irreducible
(then G 1is connected).

Example 2.2.

I

X

0
A= | X G g ¢

X

0

X

o

- © @

Eliminating the unknown X, (or the node i in the graph)
bi(bi + 3)
we nmust perform — 3 multiplications, where bi is a number of
nodes which are connected to the node i (or the number of nonzero

elements in the row 1).

Let N(i) be a set of nodes m € G which are connected with

the node i by an edge in the graph G (or N(i) = {mi ain #0D).

-6 -

Eliminating the node 1 from the graph G we get the
graph Gi , where i¢ Gi and all the nodes m & N(i) are pair-
wise connected. Therefore eliminating the node i from G (the
unknown xi) we obtain z; new edges in the graph (zi new nonzero

elements are created since, by symmetry, we consider only the upper

triangular matrix).

In the example 2.2:

Eliminating the node 1 we get the graph G

1

@ai Ha HD

Gi (D.
where the edge connecting 3 , 6 has been added. Eliminating the

node 2 we get the graph Gl' .

o

-7 -

where no edge has been added into the original graph. In practice
the nearly optimal ordering is usually found by local minimization
of degree (bi) or £ill in (Zi) in every step. These algorithms are
very simple and often very efficient.

Having a nearly optimal or optimal ordering we must then
solve the ordered system by an algorithm operating only on those
elements which are actually changed by the elimination process
(e.g., see F. Gustavson [6]). Therefore, the matrix must be treated
element by element and the zero-nonzero structure of such a matrix
is described by the positions of every nonzero element. Therefore,
the use of this program can entail a considerable amount of work. This
approach is very general (further this algorithm for solving the
system by elimination is called 'general algorithm™) and it is
particularly suitable for those matrices whose nonzero elements occur

in no regular structure.

3. The pipematrices.

Let us try another approach. Let us consider a symmetric

matrix of the form:

r>'<7lo X]0 O
XX ox‘\ixig_o
ooxxmﬁo
A= X X X x\\xgixlg
X X X XXX
0 0 X xxlxax
0Q00XX|X

-8 -

The nonzero elements are indicated by the x's. We shall call this
matrix a "pipematrix." In the elimination process applied to a system
with a matrix of this form only the elements of the marked parts of
columns (the so-called "pipes') must be operated on. No other
element is changed by the elimination process. If the pipes involve
only nonzero elements, no nonzero element is created during the
elimination, i.e. "fill in" equals zero. If some zeroes appear in
the pipes, nonzero elements may be created.

The algorithm for solving the linear algebraic systems
with pipematrices treats the elements in the pipes.

Let us have a matrix A in the example 3.1.

Example 3.1.

X O x x 0]
0xx00
A= « X X 00
x Q0 XX
000 XX

Solving the system by the general algorithm, where the elements of a
matrix are treated individually, a nonzero element is created in
position 3, 4, however the element a24 remains zero (is not operated
on) so that fill is one element (a34). Considering the matrix as a

pipematrix, we operate with the whole pipes, i.e., with elements ajis

-9 -

3593 3135 B5q3 333 31,5 By, g, 8,5 8,05 8goe Therefore, in

general, when the pipes involve some zeroes we may perform operations
which are not necessary (as occurred in the example 2.1 of a
‘bandmatrix).

It is more general to consider an arbitrary matrix as a
pipematrix rather than a bandmatrix. If we consider an arbitrary
matrix as a pipematrix we generally perform fewer or at most the
same number of operations as if we consider it as a bandmatrix.

On the other hand it is less general to treat a matrix
as a pipematrix than to treat it by the general algorithm -
element by element. The zero-nonzero structure of a pipematrix is
described by the positions of whole pipes which makes this algorithm
as well as its use (handling data) simpler than the general one.

We can describe the zero-nonzero structure of a given
pipematrix by n parameters m, where (m2 , &) is the first nonzero

position in the pipe ending at (2, 2). In the example 3.1:

Let us have a pipematrix A . Let q, be the number of nonzero
elements (or elements which are considered nonzero because they
appear in the pipes) in the row i (in the upper triangle). In

the example 3.1: qy = 2, 9, = 2, qq = 2, q = 1, 9g = 0o .
Then the number of multiplications‘performed during the forward course

of Gauss elimination is

- 10 -

n qi(qi + 3)
i=1 2 '

It is evident that the number of operations performed during
the elimination process for a pipematrix depends on the number of pipes
which intersect a particular row and on the length of every pipe.

Now the problem arises to find a permutation by which the
matrix would be reordered into the form of a pipematrix whose pipes
include as few zero elements as possible.

Let A be a symmetric irreducible matrix which can be elimi-
nated with an arbitrary order of rows and columns. Suppose A can be
permuted into the pipematrix form with full pipes. Let Go be the
graph of the matrix A . The following procedure gives the permutation

by which the matrix is reordered into the form with full pipes.

Procedure 1

Step 1
1 Set Sl = {i:z, = 0}
. 1 tz

(According to the assumptions about the matrix A there exists

at least one node i for which z, = 0.)

2. Either

A. Select :iési arbitrarily or

1 _ i al -
B, Set S, = {1.16 Sl R bi mlnlbk}
kéSl

and select :i€S; arbitrarily.

- 11 -

3. Set Sl = {m: me€N()} (= {m: a; £ 0D

Eliminate the node i from the graph Go .

Step k=2, .. ., n"1

1. Set Rk

{j: J€N(m) for all mesk"l}

(Rk # @ because Sk—lCRk)

2. Set sli = {j: jéRk M 0}

If Sllc= # delete i from Sl;—l and repeat the step k-1 .

3. If SII # @ then corresponding to the choice of either 2A or 2B

in step 1, choose either

A. Select iGSE arbitrarily or

k k k-
B. Set S, =4 j: j€S; , J€S Py p. = max p
j @
q€S,
(= {j: j is an index of the longest pipe}
Set 51§= j:JéSlz,b,=minb
k
9€s,

Select iESI; arbitrarily

4. Set sk = {m: meN(i)}

Eliminate the node i from the graph Gk—l .

Remark
If we choose the alternative 2B instead of 2A in step 1

and 3B instead of 3A we may require less time to complete the process.

- 12 -

With this algorithm the matrix is permuted into the pipematrix form

with full pipes under the assumptions mentioned above.

Procedure 2

Step 1
1 .. .
1. Set Sl —{1. zi = min zk }
k={1,...,n}
2. Either

A. Select iesi arbitrarily or

1 .o 1 s
B. Set 82 =Jd1i: 1681 , bi = m]_nlbk
k€S-.L

Select i€S]2“ arbitrarily.
3. Set S = {m: m€N()}
Eliminate the node i from the graph G0 (or, eqnivalently, connect

the nodes mé€N(i) pairwise).

Step k=2, ..., n-1

1. Set Rk

{j: jEN(m) for all mésk_l}
2. Set Sli {j:jGRk,z.=minz }
] k q
q€R

3. Corresponding to the choice of 2A or 2B above, choose either

A. Select iési arbitrarily or

k k- 4
B. Set S, =<4i: jesli , €S PJ | yhere pj = max Py
_ k
K K . €S,
Set S, =J4j: j€S, ;3 bj = min bg
3 2 k
q€s’y

Select 16813 arbitrarily.

4, Set Sk = {m: mEN@E)} .

Eliminate the node i from the graph G *

- 13 -

Remark

If we choose_the alternatives 2B instead of 2A and 3B

instead of 3A we sometimes obtain a better ordering.

The procedures shown above have these important

properties:

1.

If the matrix can be permuted into the form with full pipés

then procedure 1 gives the corresponding permutation.‘

If procedure 2 is applied to the matrices which cannot be permuted
into the form with fhll.pipes it may give an acceptable ordering
in some examples as will be shown in Chapter 4.

Procedure 2 is not very time consuming because only a certain

set of nodes is tested iﬂ each step.

The only time consuming part of procedure 1 may be part 2 in

the steps k=2, . . ., n -— 1 where it can theoretically happen
that we go back to the very beginning of the procedure several
times. However, in the computations performed where a matrix

was permuted into the form with full pipes only procedure 2 was
used and, therefore, this problem did not arise.

Assume we have an arbitrary matrix ordered by the permutation
given by either procedure 1 or 2. Let us solve the system of
linear algebraic equations by the algorithm for pipematrices.
Then the same number of operations are required as in the

general algorithm where the matrix is treated element by element

(e.g., F. Gustavson [6]). This follows from the procedure itself.

4, Examples and results.

Procedure 2 was applied to several types of matrices.
The results were very interesting. Let us show two typical examples
where the procedure yields a satisfactory ordering. In procedure 2,

the parts 2B and 3B were used (instead of 2A and 3A, respectively).

1
2

recommended, the node with the lowest number in the original ordering

In the parts 2B and 3B where "Select ig S (Sg) arbitrarily” is

was selected.
Example 4.1

(The example of a matrix that can be reordered into the
pipematrix form with full pipes.)

The matrix which arises from mesh refinement in one dimension
when the solution of a certain boundary value problem is approximated
by one type of hill functions (See: I.Babuska [8], [9]) has a graph
of the type in the Fig. 4.1.

The corresponding matrix is given in Fig. 4.2. Proéedure
2 gives the ordering in Fig. 4.3 and the reordered matrix is Ao in
Fig. 4.4. Eliminating the system with the matrix Ao (by the
elimination procedure for pipematrices) we get zero fill.

We can obtain several orderings by which the matrix is
reordered into the pipematrix form with full pipes by starting with
various original orderings.

Example 4.2
Suppose we have a matrix with graph G in the figure 4.5

(which arises from using the five point difference formula in

- 15 -

approximating certain boundary value problems on an L-shaped domain).
If we number the nodes in the so-called natural ordering (See Fig. 4.5)
we obtain a bandmatrix with m = m, .

Let us number the nodes by procedure 2. We then have the
ordering indicated in Fig. 4.6. With this ordering, the number of
operations performed during the elimination in part I (see Fig. 4.5)
is less than or equal to that for the bandmatrix with m = min (ml,

m, + m3) and in part II with m = min (m3, m4) . This can result in
a substantial time and operations reduction. The same results are
valid for various types of L-shaped domains which differ only in the
ratios of Wy, Mm,, m3, m4 . Moreover, having matrices with the

graph in Fig. 4.5 where only h (a mesh size) is different, it is

not necessary to seek an ordering for every matrix because the procedure
gives a general rule for orderings with various magnitudes of h .
For example, let us consider the L-shaped domain above. Then for
every part of the domain there is a formula describing the relation
between the coordinates of the node (x, y) in the net (it is also the
node in the graph of the matrix) and the number N(x, y) din the

ordering. For example in part 1 (See Fig. 4.7)
_1(x? X3\, ® X, y-x
N(x,y)—z(ﬁf+§7+h+h>+ﬂ-§+h+ - é’ox+c}'oy

(where & =1 if x=0 and d_ =0 if y = 0)
ox oy

- 16 -

is valid. Similar formulas are valid for the other parts of the
domain.

Let us have a matrix with graph G in Fig. 4.5. Let us
permute the rows and columns using the ordering given by procedure 2
and let us solve the system by the algorithm for pipematrices. Also
let us permute the rows and columns in the ordering given by the
"minimal degree algorithm" and solve the system by the general

algorithm. Then we have the following results:

(m, =5, m,=5,m,=5,m =12, n = 80)

1. Ordered in the so-called "natural ordering' we get the bandmatrix

with m = 12. Solved by the algorithm for bandmatrices

80 x 13

1040 elements are treated.
2. Ordered by procedure 2 and solved by the algorithm for pipematrices,
£ill is 230.
3. Ordered in the ordering given by the "minimal degree algorithm"
and solved by the general algorithm, fill is 188.
In comparison with 1 the fills in 2 and 3 are approximately the same,
but in case 3 we require the general algorithm for solving the system.
The technique where the matrix is permuted by the procedurex
1 or 2 into the pipematrix form and the system is solved in the corres-—
ponding way is advantageous if applied to certain matrices (as the
example 4.1, 4.2) in comparison with both of the other approaches

mentioned in Chapter 2.

-17 -

The algorithm for solving the system with a pipematrix and,
in particular, its operation (handling input data) are simpler than
the general algorithm and its application. On the other hand a
pipematrix form is more general than a bandmatrix form, which, in
turn, may be an advantage; particularly if the ordering has been
found for a set of matrices with the same zero-nonzero structure as

in the example 4.2,

- 18 ~

]
<t

¥ 1
X % X X XK
% % X % KA
X ¥ X ¥ X XX
X % X % X KK
X X% ® X X X
o K o K
XX Vn.vAvh
% X X % X
% X % % % X % X

w X
X X X
® KK
% X X
X %X X WX K KK KKK
X X% S M MR KA KR K
1 A

53,4,2,

- 19 -~

¥
% ¥
¥ % X
X %X X
% X X
KX YK KX XXXX XY X
% %X X K Y
WX XX wx XX
X X X X XK XXX
MY R KHXMKH XXX
XM KR XK KX X XX
XX XX %X
WX % XK X
3 X KXX

Fig. 4.4.

X X X X
K XX %
A% X

XK XX K

i

A4

M

i7

N

My

-
-~

Fiﬁ' 4, 5,

- 20 -

%21“

Fig. 4,7,

- 22 —

[1]

[2]

[3]

[4]

(5]

(6]

[7]

(8]

[9]

- 23 -

References

E. Cuthill, J. McKee, Reducing the bandwidth of sparse symmetric
matrices, 1969 Summer Natl. Acm Meeting Proceedings.

G. G. Alway, D. W. Martin, An algorithm for reducing the bandwidth
of a matrix of symmetric configuration, Computer J. 8 (1965/66),
264-72. :

R. Rosen, Matrix bandwidth minimization, ACM National Conference,
Las Vegas, Nevada, 1968.

S. Parter, The use of linear graphs in Gauss elimination, SIAM
Rev. 3 (1961), 119-30.

R. P, Tewarson, The Gaussian Elimination and Sparse Systems,
Proc. of the Symposium on Sparse Matrices and Their Appl.,
IBM Watson Research Center, 1968.

F. G. Gustavson, W. M. Liniger, R. A. Willomghby, Symbolic
Generation of an Optimal Crout Algorithm for Sparse Systems of
Linear Equations, Proc. of the Symposium on Sparse Matr. and
Their Appl., IBM Watson Res. Center, 1968.

W. R. Spillers, N. Hickerson, Optimal elimination for sparse
symmetric systems as a graph problem, Quar. Appl. Math. 26 (1968)
425-32.

I. Babuska, Finite element method for domains with corners, to
appear.

I. Babuska, The rate of convergence for the finite element
method, to appear.

